Tuesday 31 October 2017

Função de transferência de filtro em média discreta


Introdução à filtragem 9.3.1 Introdução à filtragem No campo do processamento de sinal, o design de filtros de sinais digitais envolve o processo de supressão de certas frequências e impulsionar outras. Um modelo de filtro simplificado é onde o sinal de entrada é modificado para obter o sinal de saída usando a fórmula de recursão. A implementação de (9-23) é direta e requer apenas valores iniciais e, em seguida, é obtida por iteração simples. Como os sinais devem ter um ponto de partida, é comum exigir isso e para. Enfatizamos esse conceito fazendo a seguinte definição. Definição 9.3 (Sequência Causal) Dada a sequência de entrada e saída. Se e para, a sequência é dita causal. Dada a sequência causal, é fácil calcular a solução para (9-23). Use o fato de que essas seqüências são causais: o passo iterativo geral é 9.3.2 Os Filtros Básicos Os seguintes três filtros básicos simplificados servem como ilustrações. (I) Zeroing Out Filter, (note que). (Ii) Boosting Up Filter, (note que). (Iii) Filtro de Combinação. A função de transferência para esses modelos de filtros tem a seguinte forma geral onde as transformações z das seqüências de entrada e saída são e, respectivamente. Na seção anterior, mencionamos que a solução geral para uma equação de diferença homogênea é estável somente se os zeros da equação característica estiverem dentro do círculo da unidade. Da mesma forma, se um filtro é estável, os pólos da função de transferência devem estar todos dentro do círculo da unidade. Antes de desenvolver a teoria geral, gostaríamos de investigar a resposta de amplitude quando o sinal de entrada é uma combinação linear de e. A resposta de amplitude para a freqüência usa o sinal da unidade complexa e é definida como sendo A fórmula para será rigorosamente explicada após alguns exemplos introdutórios. Exemplo 9.21. Dado o filtro. 9.21 (a). Mostre que é um filtro de exclusão a zero para os sinais e calcula a resposta de amplitude. 9.21 (b). Calcule as respostas de amplitude e investigue o sinal filtrado para. 9.21 (c). Calcule as respostas de amplitude e investigue o sinal filtrado para. Figura 9.4. A resposta de amplitude para. Figura 9.5. A entrada e saída. Figura 9.6. A entrada e saída. Explore a Solução 9.21. Exemplo 9.22. Dado o filtro. 9.22 (a). Mostre que é um filtro de aumento para os sinais e calcula a resposta de amplitude. 9.22 (b). Calcule as respostas de amplitude e investigue o sinal filtrado para. Figura 9.7. A resposta de amplitude para. Figura 9.8. A entrada e saída. Explore a Solução 9.22. 9.3.3 A Equação de Filtro Geral A forma geral de uma equação de diferença de filtro de ordem é onde e são constantes. Observe cuidadosamente que os termos envolvidos são da forma e onde e, o que torna esses termos atrasados. A forma compacta de escrever a equação de diferença é onde o sinal de entrada é modificado para obter o sinal de saída usando a fórmula de recursão. A porção irá libertar sinais e aumentar os sinais. Observação 9.14. Fórmula (9-31) é chamada de equação de recursão e os coeficientes de recursão são e. Ele mostra explicitamente que a saída atual é uma função dos valores passados, para, a entrada atual e as entradas anteriores para. As seqüências podem ser consideradas como sinais e são zero para índices negativos. Com esta informação, podemos agora definir a fórmula geral para a função de transferência. Usando a propriedade de tempo retardado para seqüelas causais e tomando a transformada z de cada termo em (9-31). Obtemos Podemos avaliar as somas e escrever isso de forma equivalente. Da equação (9-33) obtemos o que leva à seguinte definição importante. Definição 9.4 (Função de transferência) A função de transferência correspondente à equação de diferença de ordem (8) é dada pela Fórmula (9-34) é a função de transferência para um filtro de resposta de impulso infinito (filtro IIR). No caso especial em que o denominador é unidade, torna-se a função de transferência para um filtro de resposta de impulso finito (filtro FIR). Definição 9.5 (Resposta da amostra unitária) A sequência correspondente à função de transferência é chamada de resposta da amostra unitária. Teorema 9.6 (Resposta de saída) A resposta de saída de um filtro (10) dado um sinal de entrada é dada pela transformação inversa z e na forma de convolução é dada por Outro uso importante da função de transferência é estudar como um filtro afeta Várias frequências. Na prática, um sinal de tempo contínuo é amostrado em uma freqüência que é pelo menos duas vezes a maior freqüência de sinal de entrada para evitar a dobra de frequência ou o alias. Isso ocorre porque a transformada de Fourier de um sinal amostrado é periódica com o período, embora não vamos provar isso aqui. Aliasing evita a recuperação precisa do sinal original a partir de suas amostras. Agora, pode-se mostrar que o argumento da transformada de Fourier se mapeia no círculo da unidade do plano z através da fórmula (9-37), onde é chamada de freqüência normalizada. Portanto, a transformada z avaliada no círculo da unidade também é periódica, exceto com o período. Definição 9.6 (Resposta de amplitude) A resposta de amplitude é definida como a magnitude da função de transferência avaliada no sinal da unidade complexa. A fórmula é (9-38) ao longo do intervalo. O teorema fundamental da álgebra implica que o numerador tem raízes (chamado zeros) e o denominador tem raízes (chamados de pólos). Os zeros podem ser escolhidos em pares conjugados no círculo da unidade e para. Para a estabilidade, todos os pólos devem dentro do círculo da unidade e para. Além disso, os pólos são escolhidos para serem números reais e em pares conjugados. Isso garantirá que os coeficientes de recursão sejam todos números reais. Os filtros IIR podem ser todo pólo ou pólo zero e a estabilidade é uma preocupação com os filtros FIR e todos os filtros zero são sempre estáveis. 9.3.4 Design de filtros Na prática, a fórmula de recursão (10) é usada para calcular o sinal de saída. No entanto, o design do filtro digital é baseado na teoria acima. Começa selecionando a localização de zeros e pólos correspondentes aos requisitos de design do filtro e construindo a função de transferência. Como os coeficientes são reais, todos os zeros e pólos que tenham um componente imaginário devem ocorrer em pares conjugados. Em seguida, os coeficientes de recursão são identificados em (13) e utilizados em (10) para escrever o filtro recursivo. Tanto o numerador como o denominador podem ser dados em fatores quadráticos com coeficientes reais e possivelmente um ou dois fatores lineares com coeficientes reais. Os princípios a seguir são usados ​​para construir. (I) Fatores de redução de precisão Para filtrar os sinais e, use fatores da forma no numerador de. Contribuirão para o termo (ii) Aumentando os Fatores Para amplificar os sinais e, use fatores da forma Resposta de Foco do Filtro Médio Corrente A resposta de freqüência de um sistema LTI é o DTFT da resposta de impulso, A resposta de impulso de um L A média móvel é a média. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyI precisa projetar um filtro de média móvel que tenha uma freqüência de corte de 7,8 Hz. Eu usei filtros de média móvel antes, mas, na medida em que eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso se relaciona com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e estou trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho médio da janela de filtro móvel de 130 amostras, ou há algo mais que eu estou faltando aqui? 18 de julho 13 às 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O som adicionado e também para fins de suavização, mas se você usar o mesmo filtro de média móvel no domínio de freqüência para a separação de freqüência, o desempenho será o pior. Então, nesse caso, use filtros de domínio de freqüência ndash user19373 3 de fevereiro 16 às 5:53 O filtro de média móvel (às vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, afirmado de forma diferente: lembrando que uma resposta de freqüência de sistemas de tempo discreto É igual à transformação de Fourier de tempo discreto de sua resposta de impulso, podemos calcular da seguinte maneira: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (omega). Usando algumas manipulações simples, podemos obter isso de forma mais fácil de entender: isso pode não parecer mais fácil de entender. No entanto, devido à identidade do Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse anteriormente, o que você realmente está preocupado é a magnitude da resposta de freqüência. Então, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Podemos soltar os termos exponenciais porque eles não afetam a magnitude do resultado e 1 para todos os valores de omega. Uma vez que xy xy para dois números complexos finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta global de magnitude (em vez disso, eles afetam a resposta de fase de sistemas). A função resultante dentro dos suportes de magnitude é uma forma de um kernel Dirichlet. Às vezes, é chamado de função periódica sinc, porque se parece com a função sinc algo em aparência, mas é periodicamente. De qualquer forma, uma vez que a definição de frequência de corte é pouco especificada (ponto -3 dB -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Ajuste H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina omega igual à frequência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se de que omega 2pi frac, onde fs é a taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Esse deve ser o comprimento da sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erros Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui, finalmente, qual era a abordagem seguida. O resultado baseou-se na aproximação do espectro de amplitude MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aprox. 1 (frac - frac) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac, multiplicando Omega por um coeficiente de obtenção de MA (Omega) aproximadamente 10.907523 (frac-frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Todo o acima se relaciona com a frequência de corte -3dB, o assunto desta publicação. Às vezes, é interessante obter um perfil de atenuação em stop-band que é comparável ao de um filtro de passagem baixa IIR de 1ª ordem (LPF de um único pólo) com uma freqüência de corte de -3dB dada (como um LPF também é chamado de integrador vazado, Tendo um pólo não exatamente na DC, mas perto disso). De fato, tanto o MA quanto o LPR de 1ª ordem IIR têm uma inclinação de -20dBdecade na banda de parada (um precisa de um N maior do que o usado na figura, N32, para ver isso), mas enquanto o MA tem nulos espectrales no FkN e um Por um lado, o filtro IIR possui apenas um perfil 1f. Se alguém quiser obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR e corresponda às freqüências de corte 3dB para serem iguais, ao comparar os dois espectros, ele perceberia que a ondulação da faixa de parada do filtro MA termina 3dB abaixo do do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR, as fórmulas podem ser modificadas da seguinte forma: encontrei o script Mathematica onde eu calculava o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com o MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1 quadrado a partir daí. Ndash Massimo 17 jan 16 às 2:08

No comments:

Post a Comment